Industrial controller KS 50-1

(0° an BlueControl

More efficiency in engineering, more overview in operating:
The projecting environment for the BluePort controllers

Description of symbols:

(i) General information
! . General warning
A Attention: ESD sensitive devices
© PMA Proze $ß-$ und Maschinen-Automation GmbH Printed in Germany
All rights reserved. No part of this document may bereproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen Automation
P.O.Box 310229

D-34058 Kassel
Germany

Contents

1 Mounting 5
2 Electrical connections 6
2.1 Connecting diagram 6
2.2 Terminal connection. 6
3 Operation 10
3.1 Front view 10
3.2 Behaviour after power-on 11
3.3 Operating level 11
3.4 Maintenance manager / Error list 12
3.5 Self-tuning 14
3.5.1 Preparation for self-tuning 14
3.5.2 Optimization after start-up or at the set-point 15
3.5.3 Selecting the method ($\mathrm{CanF} /$ [ntr/tunE) 15
3.5.4 Step attempt after start-up 16
3.5.5 Pulse attempt after start-up 16
3.5.6 Optimization at the set-point 16
3.5.7 Optimization at the set-point for 3-point stepping controller 18
3.5.8 Self-tuning start 19
3.5.9 Self-tuning cancellation 19
3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning 20
3.5.11 Examples for self-tuning attempts 20
3.6 Manual tuning 21
3.7 Second PID parameter set 23
3.8 Alarm handling. 23
3.9 Operating structure. 25
4 Configuration level 26
4.1 Configuration survey 26
4.2 26
4.3 26
4.4 Configurations 27
4.5 Set-point processing 36
4.5.1 Set-point gradient / ramp 36
4.6 KS50-1 cooling functions 36
 37
4.6.2 Switching attitude linear ($\mathrm{FHL}=\mathbf{L}$) 37
4.6.3 Switching attitude non-linear ($\mathrm{ELL} L=\mathbf{Z}$) 38
4.6.4 Heating and cooling with constant period ($5 \mathrm{IL} \mathrm{L}=\boldsymbol{Z}$) 38
4.7 Configuration examples 39
4.7.1 On-Off controller / Signaller (inverse) 39
4.7.2 2-point controller (inverse) 40
4.7.3 3-point controller (relay \& relay) 41
4.7.4 3-point stepping controller (relay \& relay) 42
4.7.5 Continuous controller (inverse) 43
4.7.6 - Y - Off controller / 2-point controller with pre-contact 44
4.7.7 KS50-1 with measured value output 45
5 Parameter setting level 46
5.1 Parameter survey 46
5.2 Parameters 47
5.3 Input scaling 50
5.3.1 Input \boldsymbol{i} のr.i 50
5.3.2 Input $\boldsymbol{1}$ คr 50
6 Calibration level 51
7 Programmer. 54
8 Special functions 56
8.1 Start-up circuit 56
8.2 Boost function 56
8.3 KS50-1 as Modbus master 57
8.4 Linearization 58
9 BlueControl 59
10 Versions 60
11 Technical data 61
12 Safety hints 65
12.1 Resetting to factory setting. 66

1 Mounting

Safety switch:
For access to the safety switches, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.

$10 \mathrm{~V} \leftrightarrow$ right 1 Current signal / Pt 100 / thermocouple at / n P. 1			
	left	Voltage signal at inP. 1	
Loc	open	Access to the levels is as adjusted by means of BlueControl (engineering tool)	(2)
	closed	all levels accessible wihout restriction	

(1) Factory setting
(2) Default setting: display of all levels suppressed, password 9 P55 = MFF

Safety switch $10 \mathrm{~V} \leftrightarrow \mathbf{m A} /$ Pt always in position left or right. Leaving the safety switch open may lead to faulty functions!
$\underset{\Delta}{\Delta}$
Caution! The unit contains ESD-sensitive components.

2 Electrical connections

2.1 Connecting diagram

Modbus RTU

* Safety switch $\mathrm{mA} \leftrightarrow \mathrm{V}$ in position leftThe controller is fitted with flat-pin terminals $1 \times 6,3 \mathrm{~mm}$ or $2 \times 2,8 \mathrm{~mm}$ to DIN 46244

2.2 Terminal connection

Power supply connection
See chapter 11 "Technical data"
Connection of input INP1
Input for variable x 1 (process value)
a thermocouple
b resistance thermometer (Pt100/ Pt1000/KTY/ ...)
c current $(0 / 4 \ldots 20 \mathrm{~mA})$
d voltage $(0 / 2 \ldots 10 \mathrm{~V})$

Connection of input INP2
 (3

Heating current input ($0 . . .50 \mathrm{~mA} \mathrm{AC}$) or input for ext. set-point ($0 / 4 \ldots 20 \mathrm{~mA}$)

Connection of input dil 4

Digital input, configurable as switch or push-button

Connection of outputs OUT1/2 (5

Relay outputs $250 \mathrm{~V} / 2 \mathrm{~A}$ normally open with common contact connection

Connection of output OUT3
6
a relay $(250 \mathrm{~V} / 2 \mathrm{~A})$, potential-free changeover contact universal output
b current ($0 / 4 \ldots 20 \mathrm{~mA}$)
c voltage ($0 / 2 \ldots 10 \mathrm{~V}$)
d transmitter supply
e $\operatorname{logic}(0 . .20 \mathrm{~mA} / 0 . .12 \mathrm{~V})$

Connection of inputs di2/3 (7) (option)

Digital inputs (24 VDC external), galvanically isolated, configurable as switch or push-button

Connection of output $U_{T} 8$ (option)

Supply voltage connection for external energization

Connection of outputs OUT5/6 (option)
 9

Digital outputs (opto-coupler), galvanic isolated, common positive control voltage, output rating: 18...32VDC

Connection of bus interface (10) (option)
RS422/485 interface with Modbus RTU protocol

78 di2/3, 2-wire transmitter supply with U_{T}

4 If the U_{T} and the universal output OUT3 is used there may be no external galvanic connection between measuring and output circuits!

6 OUT3 as logic output with solid-state relay (series and parallel connection)

(10) RS485 interface (with RS232-RS485 interface converter)

* Interface description Modbus RTU in seperate manual: see page 63.

KS50-1 connecting example:

CAUTION: Using a temperature limiter is recommendable in systems where overtemperature implies a fire hazard or other risks.

3 Operation

3.1 Front view

LED colours:
LED 1, 2, 3: yellow
LED OK: green other LEDs: red
(1) Status of switching outputs DuE. $1 . . .5$
(2) Lit with limit value 1 (PR-R / L in) not exceeded
(3) Process value display
(4) Set-point, controller output
(5) Signals [anF and PRIP level
(6) Programmer running
(7) Self-tuning active

8 Entry in error list
(9) Set-point $5 P .2$ or $5 P \cdot E$ is effective
(10) Set-point gradient effective
(11) Manual/automatic switch-over:

Off: Automatic
On: Manual (changing possible)
Blinks: Manual (changing not possible $(\rightarrow$ Conf/Entr/n月n)
(12) Enter key:
calls up extended operating level / error list
(13) Up/down keys:
changing the set-point or the controller output value
Manual mode /spec. function (EanF/Lati)
(15) PC connection for BlueControl (engineering tool)
(10) Freely programmable function key
(i) In the upper display line, the process value is always displayed. At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the operating level.
The unit is in the condition which was active before power-off.
If KS50-1 was in manual mode before power-off, the controller starts with the last correcting value after switching on again.

3.3 Operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

Errorliste (if error exists)

Operation

3.4 Maintenance manager / Error list

With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in
 the display. To reach the error list press \square twice.

Err LED status	Signification	Proceed as follows
blinks	Alarm due to existing error	Determine the error type in the error list via the error number Remove the error
lit	Error removed, Alarm not acknowledged	- Acknowledge the alarm in the error list pressing key \triangle or ∇ - The alarm entry was deleted.
off	No error, all alarm entries deleted	

Error list:

Name	Description	Cause	Possible remedial action
E. 1	Internal error, cannot be removed	E.g. defective EEPROM	- Contact PMA service - Return unit to our factory
E. 2	Internal error, can be reset	e.g. EMC trouble	- Keep measurement and power supply cables in separate runs - Ensure that interference suppression of contactors is provided
5.4	Hardware error	- Codenumber and hardware are not identical	- Contact PMA service - Elektronic-/Optioncard must be exchanged
Fbr.	Sensor break INP1	- Sensor defective - Faulty cabling	- Replace INP1 sensor - Check INP1 connection
5ht. 1	Short circuit INP1	Sensor defective - Faulty cabling	- Replace INP1 sensor - Check INP1 connection
P0L. 1	INP1polarity error	- Faulty cabling	- Reverse INP1 polarity
Fbr 2	Sensor break INP2	- Sensor defective - Faulty cabling	- Replace INP2 sensor - Check INP2 connection
5hte ${ }^{\text {a }}$	Short circuit INP2	- Sensor defective - Faulty cabling	- Replace sensor INP2 - Check INP2 connection
POL. ${ }^{\text {a }}$	INP2 polarity	- Faulty cabling	- Reverse INP2 polarity
HLS	Heating current alarm (HCA)	- Heating current circuit interrupted, $\mathrm{I}<\mathrm{HE} 5$. A or $\mathrm{I}>$ HE.S (dependent of configuration) Heater band defective	- Check heating current circuit - If necessary, replace heater band
55.	Heating current short circuit (SSR)	Current flow in heating circuit with controller off SSR defective	- Check heating current circuit - If necessary, replace solid-state relay

Name	Description	Cause	Possible remedial action
L00P	Control loop alarm (LOOP)	- Input signal defective or not connected correctly - Output not connected correctly	- Check heating or cooling circuit - Check sensor and replace it, if necessary - Check controller and switching device
RARH	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
RdRE	Self-tuning heating alarm cooling (ADAC)	- See Self-tuning cooling error status	- see Self-tuning cooling error status
L in. 4	stored limit alarm 1	- adjusted limit value 1 exceeded	- check process
1 1nce	stored limit alarm 2	- adjusted limit value 2 exceeded	- check process
4 1n.3	stored limit alarm 3	- adjusted limit value 3 exceeded	- check process

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di $1 / 2 / 3$, the F-key or the -key or the.
Configuration, see page 35: LanF/LELI/Erロ.ו
If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Error status:

Error status	Description	Behaviour
\square	No error	
3	Faulty control action	Re-configure controller (inverse \leftrightarrow direct)
4	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (RdRA) max. output limiting H, or
5	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
7	Output step change too small (dy >5\%)	Increase (\boldsymbol{H} dR.H) max. output limiting SH , or reduce (RaRL) min. output limiting YiLa
8	Set-point reserve too small	Increase set-point (invers), reduce set-point (direct) or increase set-point range
9	Impulse tuning failed	The control loop is perhaps not closed: check sensor, connections and process

3.5 Self-tuning

For determination of optimum process parameters, self-tuning is possible.
After starting by the operator, the controller makes an adaptation attempt, whereby the process characteristics are used to calculate the parameters for fast line-out to the set-point without overshoot.

The following parameters are optimized when self-tuning: Parameter set 1:

Pb: - Proportional band 1 (heating) in engineering units [e.g. $\left.{ }^{\circ} \mathrm{C}\right]$
L, i - Integral time 1 (heating) in [s] \rightarrow only, unless set to DFF
Ld: - Derivative time 1 (heating) in $[\mathrm{s}] \rightarrow$ only, unless set to IFF
E \quad - Minimum cycle time 1 (heating) in [s] \rightarrow only, unless Adt0 was set to "no self-tuning" during configuration by means of BlueControl ${ }^{\text {B }}$.
$\mathrm{PbZ} \quad$ - Proportional band 2 (cooling) in engineering units [e.g. ${ }^{\circ} \mathrm{C}$]
E, B - Integral time 2 (cooling) in [s] \rightarrow only, unless set to AFF
Lde - Derivative time 2 (cooling) in [s] \rightarrow only, unless set to DFF
L? \quad - Minimum cycle time 2 (cooling) in [s] \rightarrow only, unless Adt0 was set to "no self-tuning" during configuration by means of BlueControl ${ }^{\text {® }}$
Parameterset 2: according to Parameterset 1 (see page 23)

3.5.1 Preparation for self-tuning

- Adjust the controller measuring range as control range limits. Set values in n iL and in int to the limits of subsequent control.
(Configuration \rightarrow Controller \rightarrow lower and upper control range limits)

- Determine which parameter set shall be optimized.
- The instantaneously effective parameter set is optimized.
\rightarrow Activate the relevant parameter set (1 or 2).
- Determine which parameter set shall be optimized (see tables above).
- Select the self-tuning method see chapter 3.5.3
- Step attempt after start-up
- Pulse attempt after start-up
- Optimization at the set-point

3.5.2 Optimization after start-up or at the set-point

The two methods are optimization after start-up and at the set-point.
As control parameters are always optimal only for a limited process range, various methods can be selected dependent of requirements. If the process behaviour is very different after start-up and directly at the set-point, parameter sets 1 and 2 can be optimized using different methods. Switch-over between parameter sets dependent of process status is possible (see page).

Optimization after start-up: (see page 15)
Optimization after start-up requires a certain separation between process value and set-point. This separation enables the controller to determine the control parameters by evaluation of the process when lining out to the set-point. This method optimizes the control loop from the start conditions to the set-point, whereby a wide control range is covered.
We recommend selecting optimization method "Step attempt after start-up" with $\operatorname{tunE}=0$ first. Unless this attempt is completed successfully, we recommend a "Pulse attempt after start-up".

Optimization at the set-point: (see page 16)
For optimizing at the set-point, the controller outputs a disturbance variable to the process. This is done by changing the output variable shortly. The process value changed by this pulse is evaluated. The detected process parameters are converted into control parameters and saved in the controller.
This procedure optimizes the control loop directly at the set-point. The advantage is in the small control deviation during optimization.

3.5.3 Selecting the method (EanF/Entr/EunE)

Selection criteria for the optimization method:

	Step attempt after start-up	Pulse attempt after start-up	Optimization at the set-point
EunE = 0	sufficient set-point reserve is provided		sufficient set-point reserve is not provided
EunE $=1$		sufficient set-point reserve is provided	sufficient set-point reserve is not provided
EunE =2	always step attempt after start-up		

Sufficient set-point reserve:

inverse controller:(with process value $<$ set-point- (10% of rnEH -rのロL) direct controller: (with process value > set-point $+(10 \%$ ofraithernit $)$

3.5.4 Step attempt after start-up

Condition: $\quad-\operatorname{tunE}=0$ and sufficient set-point reserve provided or -EunE $=2$
The controller outputs 0% correcting variable or 4.1 a and waits, until the process is at rest (see start-conditions on page 8).
Subsequently, a correcting variable step change to 100% is output.
The controller attempts to calculate the optimum control parameters from the process response. If this is done successfully, the optimized parameters are taken over and used for line-out to the set-point.
With a 3-point controller, this is followed by "cooling".
After completing the 1st step as described, a correcting variable of $-100 \%(100 \%$ cooling energy) is output from the set-point. After successfull determination of the "cooling parameters", line-out to the set-point is using the optimized parameters.

3.5.5 Pulse attempt after start-up

Condition: - tunE = 1 and sufficient set-point reserve provided.
The controller outputs 0% correcting variable or IL L a and waits, until the process is at rest (see start conditions page 8)
Subsequently, a short pulse of 100% is output ($\mathrm{Y}=100 \%$) and reset.
The controller attempts to determine the optimum control parameters from the process response. If this is completed successfully, these optimized parameters are taken over and used for line-out to the set-point.

With a 3-point controller, this is followed by "cooling".
After completing the 1st step as described and line-out to the set-point, correcting variable "heating" remains unchanged and a cooling pulse (100% cooling energy) is output additionally. After successful determination of the "cooling parameters", the optimized parameters are used for line-out to the set-point.

3.5.6 Optimization at the set-point

Conditions:

- A sufficient set-point reserve is not provided at self-tuning start (see page 15).
- EunE is 0 or 1
- With 5 Lrt = 1 configured and detection of a process value oscillation by
 parameters are preset for process stabilization and the controller realizes an optimization at the set-point (see figure "Optimization at the set-point").
- when the step attempt after power-on has failed
- with active gradient function ($P R$ R $R / 5 E L P / F .5 P$ DFF), the set-point gradient is started from the process value and there isn't a sufficient set-point reserve.

Optimization-at-the-set-point procedure:

The controller uses its instantaneous parameters for control to the set-point. In lined out condition, the controller makes a pulse attempt. This pulse reduces the correcting variable by max. 20% (1) to generate a slight process value undershoot. The changing process is analyzed and the parameters thus calculated are recorded in the controller. The optimized parameters are used for line-out to theset-point.

Optimization at the set-point

With a 3-point controller, optimization for the "heating" or "cooling" parameters occurs dependent of the instantaneous condition.
These two optimizations must be started separately.
(1) If the correcting variable is too low for reduction in lined out condition it is increased by max. 20%.

3.5.7 Optimization at the set-point for 3-point stepping controller

With 3-point stepping controllers, the pulse attempt can be made with or without position feedback. Unless feedback is provided, the controller calculates the motor actuator position internally by varying an integrator with the adjusted actuator travel time. For this reason, precise entry of the actuator travel time (\mathbf{E}) , as time between stops is highly important. Due to position simulation, the controller knows whether an increased or reduced pulse must be output. After supply voltage switch-on, position simulation is at 50%. When the motor actuator was varied by the adjusted travel time in one go, internal calculation occurs, i.e. the position corresponds to the simulation:

Internal calculation
tt
Internal calculation always occurs, when the actuator was varied by travel time $t \mathbf{t}$ in one go, independent of manual or automatic mode. When interrupting the variation, internal calculation is cancelled. Unless internal calculation occurred already after self-tuning start, it will occur automatically by closing the actuator once.

Unless the positioning limits were reached within 10 hours, a significant deviation between simulation and actual position may have occurred. In this case, the controller would realize minor internal calculation, i.e. the actuator would be closed by 20%, and re-opened by 20% subsequently. As a result, the controller knows that there is a 20% reserve for the attempt.

3.5.8 Self-tuning start

Start condition:

- For process evaluation, a stable condition is required. Therefore, the controller waits until the process has reached a stable condition after self-tuning start.
The rest condition is considered being reached, when the process value

For self-tuning start after start-up, a 10% difference from (5P . 5 . 5) is required.
(i)

Self-tuning start can be blocked via BlueControl ${ }^{\circledR}$ (engineering tool) ($P_{\text {OLI }} \mathrm{La}$).
SLKL = Only manual start by pressing keys \square and Δ simultaneously or via interface is possible.
SLEL = 1 Manual start by press keys \square and Δ simultaneously via interface and automatic start after power-on and detection of process oscillations.

Ada LED status	Signification
blinks	Waiting, until process calms down
lit	Self-tuning is running
off	Self-tuning not activ or ended

3.5.9 Self-tuning cancellation

By the operator:

Self-tuning can always be cancelled by the operator. For this, press \square and Δ key simultaneously. With manual-automatic switch-over configured via Rey 2 key self-tuning can also be canceled by actuating 包 key. The controller continues operating with the old parameters in automatic mode in the first case and in manual mode in the second case.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller continues operating with the old parameters in automatic mode. In manual mode it continues with the old controller output value.

3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning

1. Press keys \square and Δ simultaneously:

The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
2. Press key (if configured):

The controller goes to manual mode. The Err LED continues blinking, until the self-tuning error was acknowleged in the error list.
3. Press key \square :

Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

Cancellation causes:

\rightarrow page 13: "Error status self-tuning heating (R』R.A) and cooling (RdR.L) "

3.5.11 Examples for self-tuning attempts (controller inverse, heating or heating/cooling)

Start: heating power switched on

Heating power Y is switched off (1). When the change of process value X was constant during one minute (2), the power is switched on (3). At the reversal point, the self-tuning attempt is finished and the new parameter are used for controlling to set-point W.
Start: heating power switched off The controller waits 1,5 minutes (1). Heating power Y is switched on (2). At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.

Self-tuning at the set-point

The process is controlled to the set-point. With the control deviation constant during a defined time (1), the controller outputs a reduced correcting variable pulse (max. 20\%)
(2). After determination of the control parameters using the process characteristic (3), control is started using the new parameters (4).

Three-point controller $\widehat{\wedge}$

The parameter for heating and cooling are determined in two attempts. The heating power is switched on (1). Heating parameters Pbl, Lul, Ed and $t!$ are determined at the reversal point. The process is controlled to the set-point (2). With constant control deviation, the controller provides a cooling correcting variable pulse (3).

After determining its cooling parameters $P b Z^{3}, E, E^{3}, t d^{3}$ and $t 巳^{\prime}(4)$ from the process characteristics, control operation is started using the new parameters (5).
During phase (3, heating and cooling are done simultaneously!

Operation

3.6 Manual tuning

The optimization aid should be used with units on which the control parameters shall be set without self-tuning.

For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_{g} and $\mathrm{x}_{\max }$ (step change from 0 to 100%) or t and x (partial step response) can be used to determine the maximum rate of increase $\mathrm{v}_{\text {max }}$.

The control parameters can be determined from the values calculated for delay time T_{u}, maximum rate of increase $\mathrm{v}_{\text {max }}$, control range X_{h} and characteristic K according to the formulas given below. Increase Xp , if line-out to the set-point oscillates.

$$
\begin{aligned}
\mathrm{y} & =\text { correcting variable } \\
\mathrm{Y}_{\mathrm{h}} & =\text { control range } \\
\mathrm{Tu} & =\text { delay time }(\mathrm{s}) \\
\mathrm{Tg} & =\text { recovery time }(\mathrm{s}) \\
\mathrm{X}_{\max }= & \text { maximum process value } \\
\mathrm{V}_{\max }= & \frac{X \max }{T g}=\frac{\Delta x}{\Delta t} \triangleq \text { max. rate of } \\
& \text { increase of process value }
\end{aligned}
$$

Parameter adjustment effects

Parameter	Control	Line－out of disturbances	Start－up behaviour
Pb $:$ higher	increased damping	slower line－out	slower reduction of duty cycle
lower	reduced damping	faster line－out	faster reduction of duty cycle
Ed $:$ higher	reduced damping	faster response to disturbances	faster reduction of duty cycle
lower	increased damping	slower response to disturbances	slower reduction of duty cycle
E ：	higher	increased damping	slower line－out

$\mathrm{K}=\mathrm{Vmax} * \mathrm{Tu}$
With 2－point and 3－point controllers， the cycle time must be adjusted to ヒ（ $/$ Eこ $\leq 0,25^{*} \mathrm{Tu}$

Formulas

controller behavior	Pb ${ }^{\text {f［［phy．units］}}$	E日 ：［s］	L ，i［s］
PID	1，7＊K	2＊ Tu	2＊ Tu
PD	0，5＊K	Tu	RFF
PI	2，6＊K	RFF	6＊Tu
P	K	IFF	IFF
3－point－stepping	1，7＊K	Tu	2＊Tu

3．7 Second PID parameter set

The process characteristic is frequently affected by various factors such as process value，correcting variable and material differences．
To comply with these requirements，KS 90－1 can be switched over between two parameter sets．

 key \mathbb{F} or interface（OPTION）．
（i）
Self－tuning is always done using the active parameter set，i．e．the second parameter set must be active for optimizing．

3.8 Alarm handling

Max. three alarms can be configured and assigned to the individual outputs.
 more than one signal is linked to one output the signals are OR linked. Each of the 3 limit values \mathfrak{L} iñ. which can be switched off individually (parameter $=$ "IFF"). Switching difference 45 of each limit value is adjustable.
(1) Operaing principle absolut alarm
L. $1=$ DFF

(2) Operating principle relative alarm
$\mathrm{L} .1=\mathrm{BFF}$

(2) normally open ($\mathrm{CanF} / \mathrm{But} \mathrm{x} / \mathrm{BR} \mathrm{R} \mathrm{L}=\mathrm{B}$)
(i)

The variable to be monitored can be selected seperately for each alarm via configuration
The following variables can be monitored:

- process value
- control deviation xw (process value - set-point)
- control deviation xw + suppression after start-up or set-point change
- effective set-point Weff
- correcting variable y (controller output)
- control deviation xw (process value - internal set-point)
(i)

If measured value monitoring + alarm status storage is chosen ([anF/L in / $F_{n c: x}=己$), the alarm relay remains switched on until the alarm is resetted in the

3.9 Operating structure

After supply voltage switch-on, the controller starts with the operating levels.
The controller status is as before power off.

PR-R-level: At PR, \boldsymbol{P}-level, the right decimal point of the upper display line is lit continuously.
[anF-level: At [anF - level, the right decimal point of upper display line blinks

PASS
When safety switch Loc is open, only the levels enabled by means of BlueControl (engineering tool) are visible and accessible by entry of the password adjusted by means of BlueControl (engineering tool). Individual parameters accessible without password must be copied to the extended operating level.

Factory setting: Safety switch Loc closed: all levels accessible without restriction, password $9855=1 \mathrm{FF}$.

Safety switch Loc	Password entered with BluePort ${ }^{\circledR}$	Function disabled or enabled with BluePort®	Access via the instrument front panel:
closed	OFF / password	disabled / enabled	enabled
open	OFF / password	disabled	disabled
open	OFF	enabled	enabled
open	Password	enabled	enabled after password entry

4 Configuration level

4.1 Configuration survey

Adjustment:

- The configuartion can be adjusted by means of keys Δ.
- Transition to the next configuration is by pressing key \square.
- After the last configuration of a group, danE is displayed and followed by automatic change to the next group
Return to the beginning of a group is by pressing the - key for 3 sec .

Configuration level

4.4 Configurations

EnEr

Name	Value range	Description	Default
$5 \mathrm{P} . \mathrm{F}_{0}$		Basic configuration of setpoint processing	0
	0	set-point controller can be switched over to external set-point (->1 LLI/5PE)	
	1	program controller	
	10	controller with start-up circuit	
L.Fn5		Control behaviour (algorithm)	1
	0	on/off controller or signaller with one output	
	1	PID controller (2-point and continuous)	
	2	/ Y / Off, or 2-point controller with partial/full load switch-over	
	3	$2 \times$ PID (3-point and continuous)	
	4	3 -point stepping controller	
BP\%		Manual operation permitted	0
	0	no	
	1		
FAEL		Method of controller operation	0
	0	inverse, e.g. heating	
	1	direct, e.g. cooling	
FR1:		Behaviour at sensor break	1
	0	controller outputs switched off	
	1	$\mathrm{y}=\mathrm{Y} 2$	
	2	$\mathrm{y}=$ mean output. The maximum permissible output can be adjusted with parameter $\mathbf{\square} \boldsymbol{\pi} \boldsymbol{n}$. \boldsymbol{H}. To prevent determination of inadmissible values, mean value formation is only if the control deviation is lower than parameter 1.45.	
FnIu.L	-1999... 9999	X0 (low limit range of control) 1	0
$\frac{\cos 5}{5025}$	-1999... 9999	X100 (high limit range of control) 1	900
		With active SP. 2 no cooling controlling is provided	0
	0	standard (cooling permissible with all set-points)	
	1	no cooling provided with active $5 P .2$	
EYLL		Characteristic for 2-point- and 3-point-controllers	0
	0	standard	
	1	water cooling linear	
	2	water cooling non-linear	
	3	with constant cycle	
Lant		Auto-tuning at start-up	0
	0	At start-up with step function	
	1	At start-up with impulse function. Setting for fast controlled systems (e.g. hot runner control)	
	2	Always step attempt during start-up	

Name	Value range	Description	Default
5 L-:		Start of auto-tuning	0
	0	no automatic start (manual start via front interface)	
	1	Manual or automatic start of auto-tuning at power on or when oscillating is detected	
Adt0		Optimization of T1, T2 (only visible with BlueControl!)	0
	0	Automatic optimization	

InP. 1

$\frac{\text { Name }}{5 L 5}$	Value range	Description	Default
		Sensor type selection	1
	0	thermocouple type L (-100... $900{ }^{\circ} \mathrm{C}$), Fe-CuNi DIN	
	1	thermocouple type $\mathrm{J}\left(-100 \ldots 1200^{\circ} \mathrm{C}\right), \mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type $\mathrm{K}\left(-100 \ldots 1350^{\circ} \mathrm{C}\right)$, $\mathrm{NiCr}-\mathrm{Ni}$	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil	
	4	thermocouple type S ($0 \ldots .1760^{\circ} \mathrm{C}$), PtRh-Pt10\%	
	5	thermocouple type R ($0 \ldots . .1760^{\circ} \mathrm{C}$), PtRh-Pt13\%	
	20	Pt100 (-200.0 \ldots. $100,0^{\circ} \mathrm{C}$)	
	21	Pt100 (-200.0 ... 850, $0^{\circ} \mathrm{C}$)	
	22	$\operatorname{Pt1000}\left(-200.0 \ldots 850.0{ }^{\circ} \mathrm{C}\right)$	
	23	special 0...4500 Ohm (pre-defined as KTY11-6)	
	30	$0 \ldots . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ (
	40	$0 \ldots .10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V} 1$	
5.15		Linearization (only at 5.t YP $=23(\mathrm{KTY}$ 11-6), $(0.20 \mathrm{~mA})$ and $40(0 . .10 \mathrm{~V})$ adjustable)	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Lar		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [ML level)	
	2	2-point correction (at [RL level)	
	3	Scaling (at PR, -	
fAI1		Forcing INP1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

(1) in iut and in in.t are indicating the range of control on which e.g. The self-tuning is refering

Configuration level

10P．Z

Name	Value range	Description	Default
1．Fのに		Function selection of INP2	1
	0	no function（subsequent input data are skipped）	
	1	heating current input	
	2	external set－point（ $5 P E$ ）	
	3	default correcting variable Y．E（switchover－＞L Mai ISE）	
5.59		Sensor type selection	31
	30	$0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$（1）	
	31	$0 . .50 \mathrm{~mA} \mathrm{AC} 1$	
fAI2		Forcing INP2（only visible with BlueControl！）	0
	0	No forcing	
	1	Forcing via serial interface	

1 in

Name	Value range	Description	Default
FnE． 1 Fnに．E FnE． 3		Function of limit 1／2／3	1
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring＋alarm status storage．A stored limit value can be reset via error list，（F）－key，⿴囗玉ㄹ－key or a digital input（ $->$ LDLI／Eに「．	
$\begin{aligned} & 515.1 \\ & 515.2 \\ & 515.3 \end{aligned}$		Source of Limit 1／2／3	1
	0	process value	
	1	control deviation xw（process value－set－point）	
	2	control deviation xw（with suppression after start－up and set－point change）	
	6	effective setpoint Weff	
	7	correcting variable y（controller output）	
	8	control variable deviation xw（actual value－internal setpoint）＝deviation alarm to internal setpoint	
HE．HL		Alarm heat current function（INP2）	0
	0	switched off	
	1	Overload short circuit monitoring	
	2	Break and short circuit monitoring	
LP．17L		Monitoring of control loop interruption for heating	0
	0	switched off／inactive	
	1	active If $L, i=0$ LOOP alarm is inactive！	
Hour	0FF．． 999999	Operating hours（only visible with BlueControl！）	OFF
Swit	OFF．． 999999	Output switching cycles（only visible with BlueControl！）	OFF

Configuration level

But. 1

Name	Value range	Description	Default
H.75L		Method of operation of output OUT1	0
	0	direct / normally open	
	1	inverse / normally closed	
$\begin{aligned} & 31 \\ & 4.2 \end{aligned}$		Controller output Y1/Y2	1
	0	not active	
	1	active	
$\begin{aligned} & 110.1 \\ & 1 \\ & 10.2 \\ & 1 \\ & 10 . j \\ & 10.191 \end{aligned}$		Limit 1/2/3 signal	0
	0	not active	
	1	active	
		Interruption alarm signal (LOOP)	0
	0	not active	
	1	active	
HL.HL		Heat current alarm signal	0
	0	not active	
	1	active	
HE.5L		Solid state relay (SSR) short circuit signal	0
	0	not active	
	1	active	
P.End		Programmer end signal	0
	0	not active	
	1	active	
$\begin{array}{lll} F H & 1 \\ F H & I \end{array}$		INP1/ INP2 error signal	0
	0	not active	
	1	active	
fout		Forcing OUT1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

Dut.e'

Configuration parameters Out. 2 as Out. 1 except for: Default \quad y. $1=0 \quad 4.2=1$

Dut. 3

Name	Value range	Description	Default
	Signal type selection OUT3	0	
	0	relay / logic (only visible with current/logic voltage)	
	1	$0 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	
	2	$4 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	

Configuration level

Name	Value range	Description	Default
3.1		Controller output Y1/Y2 (only visible when 0.TYP=0)	0
4.15	0	not active	
	1	active	
- 17̇. 1		Limit $1 / 2 / 3$ signal (only visible when 0.TYP=0)	1
1 10̇.	0	not active	
1 10.7	1	active	
LPGL		Interruption alarm signal (LOOP) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
HE.AL		Heating current alarm signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
HE.5L		Solid state relay (SSR) short circuit signal (only visible when 0. TYP=0)	0
	0	not active	
	1	active	
PEnd		Programmer end signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
$\begin{array}{lll} F H & 1 \\ F H & I \end{array}$		INP1/ INP2 error (only visible when 0.TYP=0)	1
	0	not active	
	1	active	
Hut.LI	-1999... 9999	Scaling of the analog output for $0 \%(0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$, only visible when O.TYP=1..5)	0
\#ut. 1	-1999... 9999	Scaling of the analog output for 100% (20 mA or 10 V , only visible when $0 . T Y P=1 . .5$)	100
71.55		Signal source of the analog output OUT3 (only visible when 0.TYP=1..5)	1
	0	not used	
	1	controller output yl (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
fout		Forcing OUT3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

But.5/But.5

Configuration parameters Out. 5 as Out. 1 except for: Default I. $1=0 \quad$ I. $\mathbf{2}=0$
Method of operation and usage of output But. 1 to But.E:
Is more than one signal chosen active as source, those signals are OR-linked.

Configuration level

104

Name	Value range	Description	Default
L.-		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	active	
	2	DI1	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	(F) - key	
58.2		Switching to second setpoint 5P.E	0
	0	no function (switch-over via interface is possible)	
	2	DI1	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	[F] - key	
5PE		Switching to external setpoint 5 P.E	0
	0	no function (switch-over via interface is possible)	
	1	active	
	2	DII	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	(F) - key	
45		Y/Y2 switching	0
	0	no function (switch-over via interface is possible)	
	2	DI1	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	[F] - key	
	6	(2) - key	
明吅		Automatic/manual switching	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DI1	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	[F] - key	
	6	(2) - key	
L.EF		Switching off the controller	0
	0	no function (switch-over via interface is possible)	
	2	DI1	
	3	DI2 (only visible with OPTION)	
	4	DI3 (only visible with OPTION)	
	5	[F] - key	
	6	- ${ }^{\text {- }}$ -	

Configuration level

Name万．L ロー	Value range	Description	Default
		Blockage of hand function	0
	0	no function（switch－over via interface is possible）	
	2	DI1	
	3	DI2（only visible with OPTION）	
	4	DI3（only visible with OPTION）	
	5	（F）－key	
Err．\％		Reset of all error list entries	0
	0	no function（switch－over via interface is possible）	
	2	DI1	
	3	DI2（only visible with OPTION）	
	4	DI3（only visible with OPTION）	
	5	［F］－key	
	6	（2）－key	
6005		Boost function：setpoint increases by 5Pbo for the timet．ba	0
	0	no function（switch－over via interface is possible）	
	2	DI1	
	3	DI2（only visible with OPTION）	
	4	DI3（only visible with OPTION）	
	5	（F）－key	
910.9		Switching of parameter set（ $\mathbf{P b}$ ，ti，td）	0
	0	no function（switch－over via interface is possible）	
	2	DII	
	3	DI2（only visible with OPTION）	
	4	DI3（only visible with OPTION）	
	5	［F］－key	
P．15		Programmer Run／Stop（see page 56）	0
	0	no function（switch－over via interface is possible）	
	2	DI1	
	3	DI2（only visible with OPTION）	
	4	DI3（only visible with OPTION）	
	5	（F）－key	
di．f 1		Function of digital inputs（valid for all inputs）	0
	0	direct	
	1	inverse	
	2	toggle key function	
$\begin{aligned} & \hline \hline \mathrm{fDI} 1 \\ & \text { fDI2 } \\ & \text { fDI3 } \end{aligned}$		Forcing dil／di2／di3（only visible with BlueControl！）	0
	0	No forcing	
	1	Forcing via serial interface	

ath

Name	Value range	Description	Default
bRad		Baudrate of the interface (only visible with OPTION)	2
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
Addr	1... 247	Address on the interace (only visible with OPTION)	1
PrEy		Data parity on the interface (only visible with OPTION)	1
	0	no parity (2 stop bits)	
	1	even parity	
	2	odd parity	
dELY	0... 200	Delay of response signal [ms] (only visible with OPTION)	0
Hn碞		Unit	1
	0	without unit	
	1	${ }^{\circ} \mathrm{C}$	
	2	${ }^{\circ} \mathrm{F}$	
ΔP		Decimal point (max. number of digits behind the decimal point)	0
	0	no digit behind the decimal point	
	1	1 digit behind the decimal point	
	2	2 digits behind the decimal point	
	3	3 digits behind the decimal point	
LEd		Function allocation of the status LEDs $1 / 2 / 3$	0
	0	OUT1, OUT2, OUT3	
	1	Heating, Alarm 2, Alarm 3	
	2	Heating, Cooling, Alarm 3	
C.dEL	$0 . .200$	Modem delay [ms]	0
FrEq		Switching $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (only visible with BlueControl!)	0
	0	50 Hz	
	1	60 Hz	
ICof		Block controller off (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
IAda		Block auto tuning (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	

Name	Value range	Description	Default
IExo		Block extended operating level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
Pass	OFF...9999	Password (only visible with BlueControl!)	OFF
IPar		Block parameter level (only visible with BlueControl!)	1
	0	Released	
	1	Blocked	
ICnf		Block configuration level (only visible with BlueControl!)	1
	0	Released	
	1	Block	
ICal		Block calibration level (only visible with BlueControl!)	1
	0	Released	
	1	Blocked	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)

Resetting the controller configuration to factory setting (Default)
\rightarrow chapter 12.1 (page 69)

BlueControl - the engineering tool for the BluePort controller series

3 engineering tools with different functionality facilitating KS50-1 configuration and parameter setting are available (see chapter 10: Accessory equipment with ordering information).
In addition to configuration and parameter setting, the engineering tools are used for data acquisition and offer long-term storage and print functions. The engineering tools are connected to KS50-1 via the front-panel interface "BluePort" by means of PC (Windows 95 / 98 / NT) and a PC adaptor. Description BlueControl: see chapter 9: BlueControl (page 62)

4.5 Set-point processing

The set-point processing structure is shown in the following picture:

4.5.1 Set-point gradient / ramp

To prevent set-point step changes, parameter r set-point r r.SP can be adjusted to a maximum rate of change. This gradientis effective in positive and negative direction..

With parameter r.5P set to IFF (default), the gradient is switched off and set-point changes are realized directly.
(for parameter: see page)

Configuration level

4.6 KS50-1 cooling functions

With KS50-1, configuration parameter [yEL (EnF/Entr/EyEL) can be used for matching the cycle time of 2-point and 3-point controllers. This can be done using the following 4 methods.

The adjusted cycle times \mathbf{t} and $\leq \mathbb{Z}$ are valid for 50% or -50% correcting variable. With very small or very high values, the effective cycle time is extended to prevent unreasonably short on and off pulses. The shortest pulses result from $1 / 4 x:\{$ or $1 / 4 \times E$. The characteristic curve is also called "bath tub curve".

Parameters to be adjusted: $\quad \mathrm{i}:$: min. cycle time 1 (heating) [s] (PRAR/Lntr)

EZ: min. cycle time 2 (cooling) [s]

4.6.2 Switching attitude linear ($54[\mathrm{~L}=\mathrm{i}$)

For heating ($\ddagger 4$), the standard method (see chapter 4.6.1) is used. For cooling (42), a special algorithm for cooling with water is used. Generally, cooling is enabled only at an adjustable process temperature (EHET), because low temperatures prevent evaporation with related cooling, whereby damage to the plant is avoided. The cooling pulse length is adjustable using parameter t.on and is fixed for all output values.
The "off" time is varied dependent of output value. Parameter E.aFF is used for determining the min "off" time. For output of a shorter off pulse, this pulse is suppressed, i.e. the max. effective cooling output value is calculated according to formula E.an $/($ E.an + E.aFF $) \cdot 100 \%$.

Parameters to be adjusted: EHET: minimum temperature for water cooling (PRTR/EnEr) Ean: pulse duration water cooling E.aFF: minimum pause water cooling

4.6.3 Switching attitude non-linear ($\left[4\left[\mathrm{~L}=\mathrm{E}^{3}\right.\right.$)

With this method, the cooling power is normally much higher than the heating power, i.e. the effect on the behaviour during transition from heating to cooling may be negative. The cooling
 curve ensures that the control intervention with 0 to -70% correcting variable is very weak. Moreover, the correcting variable increases very quickly to max. possible cooling. Parameter F.HED can be used for changing the characteristic curve. The standard method (see section 4.6.1) is also used for heating. Cooling is also enabled dependent of process temperature .

Configuration level

> Parameters to be adjusted: EHED: min. temperature for water cooling (PRIR/EnEr) E.an: Pulse duration water cooling
> E.OFF: min. pause water cooling
> F.HED: adaptation of (non-linear) characteristic Water cooling

4.6.4 Heating and cooling with constant period ($[4[L=3$)

The adjusted cycle times $t \backslash$ and $E 己$ are met in the overall output range . To prevent unreasonably short pulses, parameter $E P$ is used for adjusting the shortest pulse duration. With small
 correcting values which require a pulse shorter than the value adjusted in $E P$, this pulse is suppressed. However, the controller stores the pulse and totalizes further pulses, until a pulse of duration $E P$ can be output.

Parameters to be adjusted: (PRHR/EnEr)
t : Min. cycle time 1 (heating) [s]
Lᄅ : min. cycle time 2 (cooling) [s]
E \boldsymbol{P} : min. pulse length [s]

4.7 Configuration examples

4.7.1 On-Off controller / Signaller (inverse)

EanF/Entr: 5PFn =
EFOE =
CRAE $=0$
[anF/But.1: BREt = B
3. $1=1$

PRorf/EnEr: 5H = 0... 9999
PR-R / 5ELP: 5PLD = -1999...9999
5Р.H1 = -1999... 9999
set-point controller signaller with one output inverse action
(e.g. heating applications)
action lut. I direct
control output Y1 active
switching difference (symmetrical
to the trigger point)
set-point limit low for Weff
set-point limit high for Weff
(i) For direct signaller action, the controller action must be changed (LanF / Entr / ERat = 1)

Configuration level

4．7．2 2－point controller（inverse）

EanF／Entr：5PFn＝B
CFOE＝
ERAL $=\square$
［anF／But．1：BREt＝B 4． $1=1$
PR－R／［nEr：Pb：＝0，1．．．9999
E．1＝1．．． 9999
tdi＝1．．． 9999
t：＝0，4．．．9999
PRーロ／5ELP：5PLロ＝－1999．．．9999
5P．H1＝－1999．．． 9999
set－point controller
2－point controller（PID） inverse action
（e．g．heating applications）
action mut． 1 direct control output Y1 active proportional band 1 （heating） in units of phys．quantity（e．g．${ }^{\circ} \mathrm{C}$ ） integral time 1 （heating）in sec．
derivative time 1 （heating）in sec．
min．cycle time 1 （heating）
set－point limit low for Weff
set－point limit high for Weff
（i）For direct action，the controller action must be changed
（LanF／Entr／CRat＝ 1 ）．

4．7．3 3－point controller（relay \＆relay）

CanF／［ntr： $\begin{aligned} 5 P F n & =0 \\ E F O E & =3 \\ \text { EAEt } & =0\end{aligned}$
［anF／But：BRat＝a
$41=1$
$4.2=0$
［anF／Buta＇BREt＝a
$41=\square$
$4.2=1$
PR－R／Entr：Pb：＝0，1．．． 9999
PロZ $=0,1 \ldots 9999$
t．：＝1．．． 9999
Ł．こ＝1．．． 9999
tdi＝1．．． 9999
tde $=1 \ldots 9999$
t：＝0，4．．． 9999
をこ $=0,4 \ldots 9999$
$5 \mathrm{H}=0 \ldots 999$
PRIR／SELP：5PLI $=-1999 \ldots 9999$ 5P．H1＝－1999．．． 9999
set－point controller
3 －point controller（2xPID） action inverse
（e．g．heating applications）
action But． 1 direct control output Y1 active control output Y2 not active action But．${ }^{3}$ direct control output Y1 not active control output Y2 active proportional band 1 （heating） in units of phys．quantity（e．g．${ }^{\circ} \mathrm{C}$ ） proportional band 2 （cooling） in units of phys．quantity（e．g．${ }^{\circ} \mathrm{C}$ ） integral time 1 （heating）in sec．
derivative time 2 （cooling）in sec． integral time 1 （heating）in sec．
derivative time 2 （cooling）in sec．
min．cycle time 1 （heating）
min ．cycle time 2 （cooling）
neutr．zone in units of phys．quantity
set－point limit low for Weff
set－point limit high for Weff

Configuration level

4.7.4 3-point stepping controller (relay \& relay)

Conf / Entr	5PFn Fnc CREL	$\begin{aligned} & =a \\ & =4 \\ & =a \end{aligned}$	set-point controller 3 -point stepping controller inverse action (e.g. heating applications)
Canf/ Iut.i:	BRat	=	action But I direct
	4.1	= 1	control output Y1 active
	4.3	= 0	control output Y2 not active
Cant / Butez:	BRat	$=\square$	action 5 ute ${ }^{3}$ direct
	4.	$=\square$	control output Y1 not active
	4.2	$=1$	control output Y2 active
Prar / Entr:	Pb:	= 0,1... 9999	proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
	E.1	= 1...9999	integral time 1 (heating) in sec.
	Edi	= 1...9999	derivative time 1 (heating) in sec.
	E1	= 0,4...9999	min. cycle time 1 (heating)
	$5 H$	= 0... 9999	neutral zone in units of phy. quantity
	$E P$	= 0,1... 9999	min . pulse length in sec.
	Et	= 3... 9999	actuator travel time in sec.
PRAR/5ELP:	5P10	= -1999...999	set-point limit low for Weff
	5PH,	= -1999... 999	set-point limit high for Weff

For direct action of the 3-point stepping controller, the controller output action must be changed (LanF/Entr/CRct=1).

4.7.5 Continuous controller (inverse)

EanF/EnEr: 5PFn = E
EFnc =
EREL $=0$
[anF/Dut.3: Busp $=1 / 2$
[ut. $\mathrm{I}=-1999 \ldots 9999$
But. $=-1999 . . .9999$
PR-R/EnEr: Pb: = 0, 1...9999
t.: = 1... 9999
$\mathbf{t d} \boldsymbol{i}=1$... 9999 derivative time 1 (heating) in sec.
: $=0,4 \ldots 9999 \mathrm{~min}$. cycle time 1 (heating)
PR-R / 5ELP: 5PL日 = -1999... 9999 set-point limit low for Weff
5P.H1 = -1999... 9999
set-point controller
continuous controller (PID)
inverse action
(e.g. heating applications)

Hut. 3 type ($0 / 4 \ldots 20 \mathrm{~mA}$)
scaling analog output $0 / 4 \mathrm{~mA}$
scaling analog output 20 mA
proportional band 1 (heating)
in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
integral time 1 (heating) in sec.
set-point limit high for Weff

For direct action of the continuous controller, the controller action must be changed (LanF / [ntr / RRct = i) .
(i) To prevent control outputs $\mathbb{R} u E .1$ and $\mathbb{B L E} \mathrm{E}$ of the continuous controller from switching simultaneously, the control function of outputs $\boldsymbol{B} u t .1$ and $8 u t . Z^{2}$ must

Configuration level

4.7.6 - Y - Off controller / 2-point controller with pre-contact

Cank / Entr	5PFn EFnc ERE	$\begin{aligned} & =\square \\ & =a \\ & =0 \end{aligned}$	set-point controller -Y-Off controller inverse action (e.g. heating applications)
Eanf/ Iut. ${ }^{\text {a }}$	BRat	$=\square$	action But. 1 direct
	4.1	$=1$	control output Y1 active
	4.3	=	control output Y2 not active
Conf/ Butas:	BRat	$=\square$	action $8 u t .3$ direct
	4.	$=0$	control output Y1 not active
	4.3	= 1	control output Y2 active
Prar / Entr:	Pb:	= 0,1...9999	proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
	E, 1	= 1...9999	integral time 1 (heating) in sec.
	Edi	= 1...9999	derivative time 1 (heating) in sec.
	E	= 0,4...9999	min. cycle time 1 (heating)
	$5 H$	= 0...9999	switching difference
	d. 59	= -1999...9999	trigg. point separation suppl. cont.
PRIR / SEEP:	5P10	= -1999... 9999	set-point limit low for Weff
	5 PH	= -1999... 9999	set-point limit high for Weff

4.7.7 KS50-1 with measured value output

[anF/But.3: Dityp =

$$
=a
$$

$$
=3
$$

$$
=4
$$

But.

$$
\text { But. } 1=-1999 \ldots 9999
$$

$$
0.50=3
$$

But. 30 ... 20 mA continuous
But. 3 4... 20 mA continuous
Iut. $30 \ldots 10 \mathrm{~V}$ continuous
Dut. 3 2...10V continuous scaling Iut. 3
for $0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$
scaling 0 ut. 3
for 20 mA or 10 V
signal source for $1 u t .3$ is
the process value

5 Parameter setting level

5.1 Parameter survey

Adjustment:

- The parameters can be adjusted by means of keys $\Delta \square$
- Transition to the next parameter is by pressing key \square
- After the last parameter of a group, danE is displayed, followed by automatic change to the next group.
Return to the beginning of a group is by pressing the Ξ key for $\mathbf{3} \mathbf{~ s e c}$.
(i)

If for 30 sec. no keypress is excecuted the controler returns to the process value and setpoint display (Time Out = $\mathbf{3 0}$ sec.)

5.2 Parameters

「atr

Name	Value range	Description	Default
Pb	$11 . .9999$ (1)	Proportional band 1 (heating) in phys. dimensions (e.g. ${ }^{\circ} \mathrm{C}$)	100
Pbs	11..9999 (1)	Proportional band 2 (cooling) in phys. dimensions (e.g. ${ }^{\circ} \mathrm{C}$)	100
t!	1...999	Integral action time 1 (heating) [s]	180
E12	...999	Integral action time 2 (cooling) [s]	180
Ed	1... 9999	Derivative action time 1 (heating) [s]	180
Ede	999	Derivative action time 2 (cooling) [s]	180
t	0,4..9999	Minimal cycle time 1 (heating) [s]. The minimum impulse is $1 / 4 \mathrm{x}$ t1	10
E	0,4...9999	Minimal cycle time 2 (cooling) [s]. The minimum impulse is $1 / 4 \mathrm{x}+2$	10
5 H	0... 9999	Neutral zone or switching differential for on-off control [phys. dimensions)	2
d. 59	-1999...9999	Trigger point seperation for additional contact / Y / Off [phys. dimensions]	00
EP	0,1...9999	Minimum impulse [s]	aFF
t	$3 . .9$	Motor travel time [s]	60
42	-120...120	2. correcting variable	0
4.20	-120...120	Lower output limit [\%]	0
$4 \mathrm{H}^{1}$	-120...120	Upper output limit [\%]	100
4.18	-120...120	Working point for the correcting variable [\%]	0
צn.th	-120...120	Limitation of the mean value $\mathrm{Ym}[\%]$	5
4n	0... 9999	Max. deviation xw at the start of mean value calculation [phys. dimensions]	8
E.HET	-1999...9999	Min. temperature for water cooling. Below the set temperature no water cooling happens.	120
t.an	0,1...9999	Impulse lenght for water cooling. Fixed for all values of controller output.The pause time is varied.	0,1
E.off	1... 9999	Min. pause time for water cooling. The max. effective controller output results from E.an/(E.an +L.aFF) 100%	2
F.HET	0,1...9999	Modification of the (non-linear) water cooling characteristic (see page 39)	0,5

 0,001 is possible.

PRT. 2

Name	Value range	Description	Default
$\boldsymbol{P b}$	$1 \ldots 999(1)$	100	
Proportional band 1 (heating) in phys. dimensions (
e.g. ${ }^{\circ} \mathrm{C}$), 2. parameter set			

SELP

Name	Value range	Description	Default
5 P .12	-1999... 9999	Set-point limit low for Weff	0
5 FH	-1999... 9999	Set-point limit high for Weff	900
$5 P .2$	-1999...9999	Set-point 2.	0
1.59	0... 9999	Set-point gradient [/min]	BFF
$5 \mathrm{5Pa}$	-1999...9999	Boost set-point	30
L.ba	0... 9999	Boost time	10
4.515	-120...120	Start-up setpoint (see page 58)	20
$5 P .51$	-1999...9999	Set-point for start-up	95
L.5t	0... 9999	Start-up hold time (see page 58)	10
SP	-1999...9999	Set-point (only visible with BlueControl!)	0

 configuration r controller page 28

Pratu

Name	Value range	Description	Default
$5 P .41$	-1999...9999	Segment end set-point 1	100 (1)
Pteit	0...9999	Segment time 1 [min]	10 (2)
$5 P .82$	-1999...9999	Segment end set-point 2	100 (1)
PE.ET	0...9999	Segment time 2 [min]	10 (2)
59.03	-1999...9999	Segment end set-point 3	200 (1)
Pt. 3	0...9999	Segment time 3 [min]	10 (2)
$5 P .154$	-1999...9999	Segment end set-point 4	200 (1)
Pt. 5^{4}	0... 9999	Segment time 4 [min]	10 (2)

(1) If 5P. $: \ldots 5 P .04=$ BFF then following parameters are not shown
(2) If segment end set-point $=$ IFF then the segment time is not visible

inP. 1

Name	Value range	Description	Default
InL. 1	-1999... 9999	Input value for the lower scaling point	0
ILat. 1	-1999... 9999	Displayed value for the lower scaling point	0
I nit. 1	-1999... 9999	Input value for the upper scaling point	20
Inatil	-1999...9999	Displayed value for the lower scaling point	20
L.F	-1999... 9999	Filter time constant [s]	0,5

10p.e

Name	Value range	Description	Default
$1 \mathrm{nL.z}$	-1999... 9999	Input value for the lower scaling point	0
$\square \square^{\square 1}$	-1999... 9999	Displayed value for the lower scaling point	0
1 nille	-1999... 9999	Input value for the upper scaling point	50
$\square \mathrm{HaH.L}$	-1999... 9999	Displayed value for the upper scaling point	50

411

Name	Value range	Description	Default
L. 1	-1999... 9999	Lower limit 1	-10
H.	-1999... 9999	Upper limit 1	10
Hy5.	0... 9999	Hysteresis limit 1	1
L. ${ }^{\text {a }}$	-1999... 9999	Lower limit 2	BFF
H.E	-1999... 9999	Upper limit 2	DFF
HY5.E	0... 9999	Hysteresis limit 2	1
L. 3	-1999... 9999	Lower limit 3	BFF
H.J	-1999...9999	Upper limit 3	BFF
Hy5.3	0... 9999	Hysteresis limit 3	1
HE.H	-1999... 9999	Heat current limit [A$]$	50

(i) Resetting the controller configuration to factory setting (Default) \rightarrow chapter 12.1 (page 69)

5.3 Input scaling

 scaling of input and display values at parameter setting level is required.
Specification of the input value for lower and higher scaling point is in the relevant electrical unit (mA/V).

5.3.1 Input i np. 1

(i)
 Eanf/lar.i/Earr=z is chosen.

5.549	Input signal	$1 \mathrm{nL.1}$	FuL. 1	1 nit. 1	[1uH. 1
$\begin{gathered} 30 \\ (0 \ldots 20 \mathrm{~mA}) \\ \hline \end{gathered}$	$0 \ldots 20 \mathrm{~mA}$	0	-1999... 9999	20	-1999... 9999
	$4 \ldots 20 \mathrm{~mA}$	4	-1999... 9999	20	-1999... 9999
$\begin{gathered} 40 \\ (0 \ldots 10 \mathrm{~V}) \\ \hline \end{gathered}$	$0 \ldots 10 \mathrm{~V}$	0	-1999... 9999	10	-1999... 9999
	$2 \ldots 10 \mathrm{~V}$	2	-1999... 9999	10	-1999... 9999

In addition to these settings, \mathbf{i} ni. \mathbf{i} and \mathbf{i} nitit can be adjusted in the range ($0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$) determined by selection of $5.24 \square$.

!For using the predetermined scaling with thermocouple and resistance
 Initi: must have the same value.

Input scaling changes at calibration level $(\rightarrow$ page 53) are displayed by input scaling at parameter setting level. After calibration reset (1 FF), the scaling parameters are reset to default.

5.540	Input signal	$1 \mathrm{~nL} \mathrm{I}^{2}$	日uLこ	1 nH.z	[umer
30	$0 \ldots 20 \mathrm{~mA}$	0	-1999... 9999	20	-1999... 9999
31	$0 \ldots 50 \mathrm{~mA}$	0	-1999... 9999	50	-1999... 9999

 ($0 \ldots . .20 / 50 \mathrm{~mA}$) determined by selection of 5 L 5 F .

6 Calibration level

(1)
 or ${ }^{2}$ is chosen.

The measured value can be matched in the calibration menu ($5:-1.2$). Two methods are available:

Offset correction

(SanF/InPl/Larr=1):

- possible on-line at the process

2-point correction

(LanF/InPl/[arr=3):

- is possible off-line with process value simulator

I nl. I: The input value of the scaling point is displayed.
The operator must wait, until the process is at rest.
Subsequently, the operator acknowledges the input value by pressing key \square.
Dul. 1: The display value of the scaling point is displayed.
Before calibration, But. 1 is equal to $1 \mathrm{~nL} . \mathrm{I}_{\text {. }}$
The operator can correct the display value by pressing keys $\Delta \square$.
Subsequently, he confirms the display value by pressing key Ξ.

int. i : The input value of the lower scaling point is displayed.
The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key \square.
In in. 1: The display value of the lower scaling point is displayed.
Before calibration, Ini.i equals ini.i.
The operator can correct the lower display value by pressing the $\Delta \nabla$ keys. Subsequently, he confirms the display value by pressing key \square.
I nit. i: The input value of the upper scaling point is displayed.
The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key \square.
II ulit. i: The display value of the upper scaling point is displayed.
Before calibration intill equals intil.
The operator can correct the upper display value by pressing keys $\Delta \square$ Subsequently, he confirms the display value by pressing key - .
(i)

The parameters (the parameters below the lowest adjustment value ($1 F F$) by means of decrement key ∇.

Programmer

7 Programmer

Programmer set-up:

For using the controller as a programmer, select parameter 5P.Fn $n=1$ in the [anf menu. The programmer is started via one of digital inputs di1.. 3 or the \mathbb{F} key. Which input shall be used for starting the programmer is determined by
 For assigning the program end as a digital signal to one of the relay outputs, parameter Pand $=1$ must be selected for the relevant output Dut. 1 ...Dit. 3 in the [anf menu.

Programmer parameter setting:

A programmer with 4 segments is available to the user. Determine a segment
 $5 P .54$ for each segment in the PR1. 1 menu.

Starting/stopping the programmer:

Starting the programmer is done by digital signal at input di1.. 3 or the \mathbb{E} key selected by parameter Prirun.
The programmer calculates a gradient from segment end setpoint and segment time. This gradient is always valid. Normaly, the programmer starts the first segment at process value. Because of this the effective run-time of the first segment may differ from the at p r \boldsymbol{R} level setted segment time (process value setpoint).
After program end, the controller continues controlling with the target set-point set last.
If the program is stopped during execution (signal at digital input di1.. 3 or the (F) key is taken away), the programmer returns to program start and waits for a new start signal.

Program parameter changing while the program is running is possible.

Changing the segment time:

Changing the segment time leads to re-calculation of the required gradient. When the segment time has already elapsed, starting with the new segment is done directly, where the set-point changes stepwisely.

Changing the segment end setpoint:

Changing the set-point leads to re-calculation of the required gradient, in order to reach the new set-point during the segment rest time, whereby the required gradient polarity sign can change.

8 Special functions

8.1 Start-up circuit

The start-up circuit is a special function for temperature control, e.g. hot runner control. High-performance heating cartridges with magnesium oxyde insulation material must be heated slowly to remove the moisture and prevent destruction.

Operating principle:

(1) After supply voltage switch-on, control to start-up set-point SP.St is using start-up correcting value 4.5 E
(2) The start-up holding time t .St is started one K below the start-up set-point ($59.5 \mathrm{t}-1 \mathrm{~K}$).
(3) Subsequenlyt, the process is lined out to set-point W.
(4) If the process value drops by more than 40 K below the start-up set-point $(5.51-40 \mathrm{~K})$ due to a disturbance, the start-up procedure is re-started (© , (6, (7)).

With $W<5.5 t$, W is used as set-point. The start-up holding time $L .5 t$ is omitted.
If the gradient function ($P R$ R - R/5ELP/F.5P RFF) was selected, start-up value $5 P .51$ is reached with the adjusted gradient r.5P.
With the boost function (see chapter 8.2) selected, W is increased by SP.bo during time t.bo.

8.2 Boost function

The boost function causes short-time increase of the set-point, e.g. for removing "frozen" material rests from clogged die nozzles with hot-runner control.
If configured (LanF/LDLI/baos), the boost function can be started via digital input di 1/2/3, with the function key on the instrument front panel or via the interface (OPTION).
The set-point increase around boost set-point 5. ba remains effective as long as digital signal (di1/2 3, function key, interface) remains set. The maximum permissible cycle time (boost timeout) is determined by parameter tba. Unless reset after elapse of boost time It.ba, the boost function is finished by the controller.
(i)

The boost function also works with

- start-up circuit: 50. ba is added to W after elapse of start-up holding time E.5L.
- Gradient function: set-point W is increased by SP. bo with gradient 1.5 .

8.3 KS50-1 as Modbus master

This function is only selectable with BlueControl (engineering tool)!
Additions athr (only visible with BlueControl!)

Name	Value range	Description	Default
MASt		Controller is used as Modbus master	0
	0	Slave	
	1	Master	60
Cycl	$0 \ldots 200$	Cycle time [ms for the Modbus master to transmit its data to the bus.	6
AdrO	$1 \ldots 65535$	Target address to which the with AdrU specified data is given out on the bus.	1
AdrU	$1 \ldots 65535$	Modbus address of the data that Modbus master gives to the bus.	1
Numb	$0 \ldots 100$	Number of data that should be transmitted by the Modbus master.	0

The KS50-1 can be used as Modbus master (CanF / othr / MASt = \mathbf{i}). The Modbus master sends ist data to all slaves (broadcast message, controller adress 0). It transmits its data (modbus adress AdrU) cyclic with the cycle time Cycl to the bus. The slave controller receives the data transmitted by the masters and allocates it to the modbus target adress AdrO. If more than one data should be transmitted by the master controller (Numb >) , the modbus adress AdrU indicates the start adress of the data that should be transmitted and AdrO indicates the first target adress where the received data should be stored. The following data will be stored at the logically following modbus target adresses. With this it is possible e.g. to specify the process value of the master controller as set-point for the slave controllers.

8.4 Linearization

Linearization for inputs INP1 or INP3
Access to table " L n" " is always with selection of sensor type S.TYP $=18$: special thermocouple in INP1 or INP3, or with selection of linearization 5.1 in 1: special linearization.
Dependent of input type, the input signals are specified in $\mu \mathrm{V}$ or in Ohm dependent of input type.

With up to 16 segment points, non-linear signals can be simulated or linearized.
 ... straight lines. The straight line between the first two segments is extended downwards and the straight line between the two largest segments is extended upwards. I.e. a defined output value is also provided for each input value. When switching an 1 nx value to $D F F$, all other ones are switched off. Condition for these configuration parameters is an ascending order.

9 BlueControl

BlueControl is the projection environment for the BluePort controller series of PMA. The following 3 versions with graded functionality are available:

FUNCTIONALITY	MINI	BASIC	EXPERT
parameter and configuration setting			
controller and loop simulation	yes	yes	yes
download: trnsfer of an engineering to the controller	yes	yes	yes
online mode/ visualization	SIM only	yes	yes
defining an application specific linearization	yes	yes	yes
configuration in the extended operating level	yes	yes	yes
upload: reading an engineering from the controller	SIM only	yes	yes
basic diagnostic functions	no	no	yes
saving data file and engineering	no	yes	yes
printer function	no	yes	yes
online documentation, help	yes	yes	yes
implementation of measurement value correction	yes	yes	yes
data acquisition and trend display	SIM only	yes	yes
wizard function	yes	yes	yes
extended simulation	no	no	yes

The mini version is - free of charge - at your disposal as download at PMA homepage www.pma-online.de or on the PMA-CD (please ask for).

At the end of the installation the licence number has to be stated or DEMO mode must be chosen.

At DEMO mode the licence number can be stated subsequently under Help \rightarrow Licence \rightarrow Change.

10 Versions

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps
- operating note in 15 languages

Accessory equipment with ordering information

Description
 Order no.

Heating current transformer 50A AC
9404-407-50001
PC-adaptor for the front-panel interface 9407-998-00001
Standard rail adaptor 9407-998-00061
Operating manual German 9499-040-62818
Operating manual English 9499-040-62811
Operating manual
Interface description Modbus RTU
Interface description Modbus RTU
BlueControl (engineering tool)
BlueControl (engineering tool)
BlueControl (engineering tool)
French
9499-040-62832
German 9499-040-63618
English 9499-040-63611

Mini Download www.pma-online.de
Basic 9407-999-11001
Expert
9407-999-11011

11 Technical data

INPUTS

PROCESS VALUE INPUT INP1

Resolution: Decimal point: Dig. input filter: Scanning cycle: Measured value correction:

>14 bits

0 to 3 digits behind the decimal point adjustable 0,000... 9999 s
100 ms
2-point or offset correction

Thermocouples

\rightarrow Table 1 (page 66)

Input resistance:
Effect of source resistance:
$\geq 1 \mathrm{M} \Omega$
$1 \mu V / \Omega$
Cold-junction compensation
Maximal additional error:
Sensor break monitoring
Sensor current:
$\leq 1 \mu \mathrm{~A}$
Configurable output action

Resistance thermometer

\rightarrow Table 2 (page 66)
Connection:
Lead resistance:
Input circuit monitor:
2 or 3-wire max. 30 Ohm break and short circuit

Special measuring range

BlueControl (engineering tool) can be used to match the input to sensor KTY 11-6 (characteristic is stored in the controller).

Physical measuring range:	$0 . . .4500$
Linearization segments	16

Current and voltage signals

\rightarrow Table 3 (page 66)
Span start, end of span: anywhere within measuring range

Scaling:
Linearization:
Decimal point:
Input circuit monitor:
selectable -1999... 9999
16 segments, adaptable with BlueControl adjustable
12,5\% below span start ($2 \mathrm{~mA}, 1 \mathrm{~V}$)

SUPPLEMENTARY INPUT INP2

Resolution:	>14 bits
Scanning cycle:	100 ms
Accuracy:	$<0,5 \%$

Heating current measurement
 via current transformer (Accessory equipment)

Measuring range:
Scaling:
Current measuring range

Technical data as for INP1

CONTROL INPUT DI1

Configurable as switch or push-button!
Connection of a potential-free contact suitable for switching "dry" circuits.
Switched voltage:
$2,5 \mathrm{~V}$
Current:
$50 \mu \mathrm{~A}$

CONTROL INPUTS DI2, DI3 (OPTION)

Configurable as switch or push-button!
Optocoupler input for active triggering
Nominal voltage
24 V DC external
Current sink (IEC 1131 type 1)
Logic "0"
$-3 . .5 \mathrm{~V}$
Logic "1"
Current requirement 15... 30 V

TRANSMITTER SUPPLY UT (OPTION)
Power:

$$
22 \mathrm{~mA} / \geq 18 \mathrm{~V}
$$

If the universal output OUT3 is used there may be no external galvanic connection between measuring and output circuits!

GALVANIC ISOLATION

—— Safety isolation
= Function isolation

OUTPUTS

RELAY OUTPUTS OUT1, OUT2

Contact type:
Max. contact rating:
,ontacts with common connection
$500 \mathrm{VA}, 250 \mathrm{~V}, 2 \mathrm{~A}$ at $48 . . .62 \mathrm{~Hz}$, resistive load

Mains supply	Process value input INP1 Supplementary input INP2 Digital input di1
Relay outputs OUT 1,2	RS422/485 interface
Relay output OUT3	Digital inputs di2, 3
	Universal output OUT3
	Transmitter supply U U_{T}
	OUT5, OUT6

Min. contact rating: 6V, 1 mA DC
Operating life (electr.): 800.000 duty cycles with max. rating

Contact type:
Max.contact rating:
Min. contact rating: Operating life (electr.):
potential-free changeover contact $500 \mathrm{VA}, 250 \mathrm{~V}, 2 \mathrm{~A}$ at $48 . . .62 \mathrm{~Hz}$, resistive load
5V, $10 \mathrm{~mA} A C / D C$
600.000 duty cycles with max. contact rating

Note:

If the relays OUT1...OUT3 operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

OUT3 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.
Freely scalable resolution: 11bits

Current output

0/4... 20 mA configurable.

Signal range:	$0 . . . a p p r o x .22 \mathrm{~mA}$ Max. load: Load effect:
Resolution:	no effect
Accuracy	$\leq 2 \mu \mathrm{\mu A}(0,1 \%)$
Voltage output	$\leq 40 \mu \mathrm{~A}(0,2 \%)$
0/2...10V configurable	
Signal range:	$0 \ldots . .11 \mathrm{~V}$
Min. load:	$\geq 2 \mathrm{k} \Omega$
Load effect:	no effect
Resolution:	$\leq 11 \mathrm{mV}(0,1 \%)$
Accuracy	$\leq 20 \mathrm{mV}(0,2 \%)$

OUT3 used as transmitter supply
Output power:
$22 \mathrm{~mA} / \geq 13 \mathrm{~V}$

OUT3 used as logic output

Load $\leq 500 \Omega$
$0 / \leq 20 \mathrm{~mA}$
Load > 500Ω
$0 />13 \mathrm{~V}$

OUTPUTS OUT5, OUT6 (OPTION)

Galvanically isolated opto-coupler outputs.
Grounded load: common positive voltage.
Output rating: 18... $32 \mathrm{VDC} ; \leq 70 \mathrm{~mA}$
Internal voltage drop: $\leq 1 \mathrm{~V}$ with $I_{\max }$
Protective circuit: built-in against short circuit, overload, reversed polarity (free-wheel diode for relay loads).

POWER SUPPLY

Dependent of order:

AC SUPPLY

Voltage:
Frequency:
Power consumption
90... 260 V AC
48... 62 Hz
approx. 7,0 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage:
20,4...26,4 V AC
Frequency:
DC voltage:
Power consumption:
$48 . . .62 \mathrm{~Hz}$
18... 31 V DC approx.. 7,0 VA

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:
Non-volatile storage in EEPROM

BLUEPORT FRONT INTERFACE

Connection of PC via PC adapter (see "Accessory equipment"). The BlueControl software is used to configure, set parameters and operate the KS50-1.

BUS INTERFACE (OPTION)

Galvanically isolated
Physical:
Protocol:
Transmission speed: Address range: Number of controllers per bus: 32 Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel:	IP 65 (NEMA 4X)
Housing:	IP 20
Terminals:	IP 00

Permissible temperatures

For specified accuracy: $0 . . .60^{\circ} \mathrm{C}$
Warm-up time: $\quad \geq 15$ minutes
For operation: $\quad-20 . . .65^{\circ} \mathrm{C}$
For storage: $\quad-40 . . .70^{\circ} \mathrm{C}$

Humidity

75% yearly average, no condensation

Shock and vibration

Vibration test Fc (DIN 68-2-6)

Frequency:	$10 \ldots 150 \mathrm{~Hz}$
Unit in operation:	1 g or $0,075 \mathrm{~mm}$
Unit not in operation:	2 g or $0,15 \mathrm{~mm}$

Shock test Ea (DIN IEC 68-2-27)
Shock: 15g
Duration: $\quad 11 \mathrm{~ms}$

Electromagnetic compatibility

Complies with EN 61 326-1
(for continuous, non-attended operation)

GENERAL

Housing

Material:
Flammability class:
Makrolon 9415 flame-retardant UL 94 V0, self-extinguishing
Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):
Overvoltage category II
Contamination class 2
Working voltage range 300 V
Protection class II

Certifications

Type-tested to DIN 3440:
For use in:

- Heat generating plants with outflow temperatures up to $120^{\circ} \mathrm{C}$ to DIN 4751
- Hot water plants with outflow temperatures above $110^{\circ} \mathrm{C}$ to DIN 4752
- Thermal transfer plants with organic transfer media to DIN 4754
- Oil-heated plants to DIN 4755

cUL certification

(Type 4x, indoor use)
File: E 208286
For compliance with cUL certificate,the following information must be taken into account:

- Use only $60 / 75$ or $75^{\circ} \mathrm{C}$ copper (Cu) wire.
- Tighten the terminal- screws with a torque of 0,5-0,6 Nm

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left,
High-density mounting possible
Mounting position: uncritical
Weight: $\quad 0,27 \mathrm{~kg}$

Accessories delivered with the unit

Operating manual
Fixing clamps

Table 1 Thermocouple measuring ranges

Thermocouple type			Range	Accuracy	Resolution (\varnothing)
L	$\mathrm{Fe}-\mathrm{CuNi}(\mathrm{DIN})$	$-100 \ldots 900^{\circ} \mathrm{C}$	$-148 \ldots 1652^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,1 \mathrm{~K}$
J	$\mathrm{Fe}-\mathrm{CuNi}$	$-100 \ldots 1200^{\circ} \mathrm{C}$	$-148 \ldots 2192^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,1 \mathrm{~K}$
K	$\mathrm{NiCr}-\mathrm{Ni}$	$-100 \ldots 1350^{\circ} \mathrm{C}$	$-148 \ldots 2462^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,2 \mathrm{~K}$
N	Nicrosil/Nisil	$-100 \ldots 1300^{\circ} \mathrm{C}$	$-148 \ldots 2372^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,2 \mathrm{~K}$
S	$\mathrm{PtRh}-\mathrm{Pt} 10 \%$	$0 \ldots 1760^{\circ} \mathrm{C}$	$32 \ldots 3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,2 \mathrm{~K}$
R	$\mathrm{PtRh}-\mathrm{Pt} 13 \%$	$0 \ldots . .1760^{\circ} \mathrm{C}$	$32 \ldots 3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	$0,2 \mathrm{~K}$

Table 2 Resistance transducer measuring ranges

Type	Sens. current	Range		Accuracy	Resolution (\varnothing)
Pt100	0,2mA	$-200 \ldots 100^{\circ} \mathrm{C}$	-140... $212^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0,1K
Pt100		$-200 \ldots 850^{\circ} \mathrm{C}$	$-140 \ldots 1562^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0,1K
Pt1000		$-200 \ldots 850^{\circ} \mathrm{C}$	$-140 \ldots . .392^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1K
KTY 11-6		$-50 \ldots .150{ }^{\circ} \mathrm{C}$	-58...302 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05K

Table 3 Current and voltage measuring ranges

Range	Input resistance	Accuracy	Resolution (\varnothing)
$0-10$ Volt	$\approx 110 \mathrm{k} \Omega$	$\leq 0,1 \%$	$\leq 0,6 \mathrm{mV}$
$0-20 \mathrm{~mA}$	49Ω (voltage requirement $\leq 2,5 \mathrm{~V})$	$\leq 0,1 \%$	$\leq 1,5 \mu \mathrm{~A}$

12 Safety hints

This unit was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was delivered in safe condition.
The unit complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.
The unit was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.
The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads.
In the installation of the controller a switch or a circuit-breaker must be used and signified. The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.
If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.
After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.
Caution
When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.
Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the PMA service should be contacted. The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) kerchief.

12．1 Resetting to factory setting

In case of faultyconfiguration，KS50－1 can be reset to the default condition．

（1）For this，the operator must keep the keys increment and decrement pressed during power－on．
（2）Then，press key increment to select 455 ．
（3）Confirm factory resetting with Enter and the copy procedure is started （display［ロアリ）．
（4）Afterwards the device restarts．In all other cases，no reset will occur （timeout abortion）．

If one of the operating levels was blocked and the safety lock is open，reset to factory setting is not possible．
If a pass number was defined（via BlueControl ${ }^{\circledR}$ ）and the safety lock is open，but no operating level was blocked，enter the correct pass number when prompted in （3．A wrong pass number aborts the reset action．
The copy procedure（ $[$ QPY ）can take some seconds．
Now，the transmitter is in normal operation．
Index Configuration 32
0-9
2-point correction 51
A
Alarm handling 23-24
B
BlueControl 59
Boost function 56
Bus interface
Technical Data 62
C
Calibration level ([AL) 51-53
Certifications 63
Configuration examples 2-point controller 40
3-point controller 41
3-point stepping controller 42
Continuous controller 43
D - Y -Off controller 44
Measured value output 45
Signaller 39
Configuration level
Configuration parameters 27-35
Parameter survey 26
Connecting diagram 6
Connecting examples
di2/3, 2-wire transmitter supply 8
INP2 current transformer 7
OUT1/2 heating/cooling 7
OUT3 as logic output 8
OUT3 transmitter supply 8
RS485 interface 9
Control inputs di1, di2, di3
Technical data 61
Cooling functions
Constant period 38
Standard 37
Water cooling linear 37
Water cooling non-linear 38
Current signal measuring range 61
DDigital inputs di1, di2, di3
Technical data 61
E
Environmental conditions 63
Equipment 60
Error list 12
Error status 13
F
F - key 10
Front view 10
I
Input INP1
Configuration 28
Parameters 48
Technical data 61
Input INP2
Configuration 29
Parameters 49
Technical data 61
Input scaling 50
L
LED
Ada - LED 10
Err - LED 10
ノ-LED 10
LED colours 10
\& - LED. 10
run-LED 10
SP.x - LED 10
Linearisierung 58
M
Maintenance manager 12-13
Manual tuning 21-22
Modbus master 57
Mounting 5
0
Offset correction 51
Optimierung am Sollwert 16
Output OUT1
Configuration 29
Technical data 62
Output OUT2
Configuration 30
Technical data 62
Output OUT3
Configuration 30
Technical data 62
Output OUT5
Configuration 31
Technical data 62
Output OUT6
Configuration 31
Technical data 62
P
Parameter setting level
Parameter survey 46
Parameters 47-49
Power supply 62
Programmer
Changing segment end setpoint 55
Changing segment time 55
Parameter setting 54
Set-up 54
Starting/Stopping 54
R
Resetting to factory setting 66
Resistance thermometer measuring range 61
S
Safety hints 65-66
Safety switch. 5
Safety test 63
Self-tuning
Cancelation 19
Cancelation causes. 20
Set-point processing 36
Start-up circuit 56
T
Thermocouple measuring range 61
V
Versions 60
Voltage signal measuring range 61

Subject to alterations without notice Änderungen vorbehalten
Sours réserve de toutes modifications
© PMA Prozeß- und Maschinen-Automation GmbH P.0.B. 310 229, D-34058 Kassel, Germany

Printed in Germany 9499-040-62811 (07/2004)

